The Effect of Domain Wall on Defect Energetics in Ferroelectric LiNbO$_3$
from Density Functional Theory Calculations

Donghwa Lee†
School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea
(Received April 13, 2016; Revised May 2, 2016; Accepted May 4, 2016)

ABSTRACT

The energetics of defects in the presence of domain walls in LiNbO$_3$ are characterized using density-functional theory calculations. Domain walls show stronger interactions with antisite defects than with interstitial defects or vacancies. As a result, antisite defects act as a strong pinning center for the domain wall in LiNbO$_3$. Analysis of migration behavior of the antisite defects across the domain wall shows that the migration barrier of the antisite defects is significantly high, such that the migration of antisite defects across the domain wall is energetically not preferable. However, further study on excess electrons shows that the migration barrier of antisite defects can be lowered by changing the charge states of the antisite defects. So, excess electrons can enhance the migration of antisite defects and thus facilitate domain wall movement by weakening the pinning effect.

Key words : Defect/Domain wall interaction, Lithium Niobate, Density functional theory

1. Introduction

Ferroelectric materials are of interest for such diverse applications as non-volatile Ferroelectric Random Access Memory (FRAM),
1 electro-optic modulators2 and frequency converters.3 Especially, LiNbO$_3$ has excellent piezoelectric properties, is photo-refractive, and displays nonlinear optical properties. It also has a high spontaneous polarization, 70 μC/cm2, and high Curie temperature, \sim1480 K,4 so it is suitable for high temperature applications as well. Generally, congruent LiNbO$_3$, which has an R3c structure, is easy to grow under Li deficient conditions.5 However, recent successes using the vapor-transport equilibration (VTE) method6 have enabled the growth of stoichiometric LiNbO$_3$. Although various defect models including those for pseudo-Schottky defects, Schottky defects, and Frenkel defects have been suggested7 to explain energetically preferred defects and defect clusters in congruent LiNbO$_3$, only an Nb antisite, compensated for by four Li ion vacancies8910 and five Nb antisites compensated for by four Nb vacancies11 were found to successfully explain the stoichiometry of congruent LiNbO$_3$. Atomistic modeling by Donnerberg et al.12 showed that compensation by Nb vacancies is energetically less favorable than compensation by Li vacancies. Recent DFT calculations13 showed that Nb antisite compensated for by Li vacancies, and the Li Frenkel pair, are the most energetically favorable defect clusters in LiNbO$_3$ under Li deficient (congruent) and Li rich (stoichiometric) conditions, respectively. An analysis on various Nb antisite-Li vacancy cluster models determined that several arrangements of Li vacancies around an Nb antisite are nearly energetically equivalent.14

Interfaces between two opposite polarization domains (Domain walls) are also studied using both experiments and simulations. Gopalan et al.15 suggested two different domain walls, the Y- and X-walls, based on crystallographic orientation; the Y-wall lies parallel to the (1120) plane, while the X-wall lies parallel to the (1010) plane. In subsequent works,16 the X-wall was identified as a mixed uniaxial polarization plane, while the Y-wall was determined to be alternating planes of cations only and anions only. Energetic studies on the two domain walls17 show that the Y-wall is energetically favored but less mobile. It was also found that non-uniaxial polarization components near the domain walls can lead to Bloch-like characteristics of the X-wall and both Bloch-like and Néel-like characteristics of the Y-walls.18 Previous studies have demonstrated that defect/domain wall interactions can lead to switching in the preferred orientation of the domain wall from the Y-wall to the X-wall19 or to a reduction of the electric polarization.20 In extending the previous work on defects and domain walls, this study mainly focuses on the interaction between defects and domain walls in LiNbO$_3$ and the effect of those defects on the domain dynamics. Various aspects of defects, including type and charge state, are investigated to understand the effect of domain walls on defect energetics.

2. Simulation Methods

All the calculations are performed within the density functional theory (DFT)21 level with generalized gradient
approximation22 of exchange and correlation potential. Monkhorst-Pack29 k-point sampling with a grid of $1 \times 1 \times 2$ is used. The plane wave DFT calculations are performed with the Vienna \textit{Ab Initio} Simulation Package (VASP)24,25 using the projected augmented wave (PAW)26 pseudopotential. The generalized gradient approximation (GGA)20 is used to evaluate the exchange and correlation interactions. The plane waves are expanded up to 400 eV of kinetic energy.27 Ionic relaxation is performed until the maximum atomic force is below 0.01 eV/Å. The self-consistent solution of the Kohn-Sham functional is obtained using the residual minimization method direct inversion in the iterative subspace (RMM-DIIS) algorithm,28 which optimizes several individual energy bands at the same time. The pseudopotential and methodologies used here are the same as those used in our previous studies of intrinsic defects19,20 and domain walls.15 The climbing-image Nudged Elastic Band (NEB) method29,30 with 10 images is employed to predict the energy barrier of defect migration.

3. Results and Discussion

Although the ferroelectric fatigue and optical instability of ferroelectric LiNbO$_3$ are known to result from defects/domain wall interactions, these drawbacks still limit the usage of ferroelectric materials. To overcome the current application limits, thorough understanding of the interaction mechanism is necessary. In the current study, the interaction energetics are determined by putting three major point defects, V_{Li}, Li'_i, and Nb_{Li} at various distances from both the Y-walls and the X-wall. Three major point defects and two distinctive domain walls are identified from both the Y-walls and the X-wall. As can be seen in Fig. 2, the majority of defects show stronger interaction with the Y-wall than with the X-wall. The most prominent difference in the interaction energetics is observed for the quadruple charged Nb_{Li}; the DFT predicts that the interaction of Nb_{Li} with the X_{y}-wall (~ -0.55 eV) will be much stronger than that with the X_{x}-wall (~ -0.05 eV). For single charged defects, the maximum interaction energies of Li'_i are -0.32 eV for the X_{y}-wall and -0.16 eV for the X_{x}-wall; the maximum interaction energies of V_{Li} are -0.14 eV for the X_{y}-wall and -0.13 eV for the X_{x}-wall. Similar to the fully charged defects, the X_{x}-wall also shows stronger interaction with neutral defects; the value of -0.17 eV of the Nb_{Li}/X_{y}-wall interaction energy is stronger than the value of -0.03 eV of the Nb_{Li}/X_{x}-wall interaction energy. Previous study identified that two inequivalent X-walls have essentially identical values of domain wall defects are preferentially located at the nearest plane from the Y-wall, while the Nb_{Li} prefer to be at the second nearest plane from the wall. For comparison, the energetics of the neutral defects are also considered. Interestingly, three neutral defects show similar energetics regardless of their kinds and the values are quite close to the case of the singly charged defects ($V_{Li} = -0.11$ eV, $Li'_i = -0.12$ eV and $Nb_{Li} = -0.14$ eV). Thus, the charge states of defects play an important role in determining the energetics for the defect/Y-wall interactions.

A similar study has been also performed for the X-walls. Because our previous study identified two inequivalent X-walls related with the oxygen sublattice, current studies have calculated the interaction energies of intrinsic defects with both the X_{y}-wall and the X_{x}-wall. Although maximum interactions are observed within the second nearest plane from both the X-walls regardless of the charge states of the intrinsic defects, the energetics for their interactions are different. Fig. 2 shows a comparison of the maximum defects/X-wall interaction energy within the three nearest planes. As can be seen in Fig. 2, the majority of defects show stronger interaction with the X_{y}-wall than with the X_{x}-wall. In this paper, we have investigated the interaction energies of intrinsic defects and the energetics for their interactions are different.

Fig. 1. Schematic view of Y-wall and three major points defects in LiNbO$_3$: Li'_i, V_{Li} and Nb_{Li} are drawn to show spatial location of each point defect around the Y-wall.
energy in a perfect system. With the existence of defects, however, the current study observed that the \(X_{\text{I}} \)-wall could be energetically more stable than the \(X_{\text{II}} \)-wall. Thus, the defects/X-walls interactions explain the experimental preference of the \(X_{\text{I}} \)-wall over the \(X_{\text{II}} \)-wall.\(^{16,19}\)

Previous study has shown that the domain wall in PbTiO\(_3\) acts as a trap site for oxygen vacancies. As an extension of that study, the current work shows that the domain wall does not act as a trap site for only oxygen vacancies, but for all other intrinsic defects regardless of their charge states or defect types. For the \(Y \)-wall, the quadruply charged \(Nb_{Li} \) will more strongly interact with the wall than the singly charged \(V_{Li} \) and \(Li_{i} \). On the other hand, \(Li_{i} \) and \(Nb_{Li} \) should interact more strongly with the \(X_{\text{I}} \)-wall than with the \(X_{\text{II}} \)-wall. Because the strong interaction of \(Nb_{Li} \) with the domain walls increases the stability of the domain wall, the domain wall motion will be more difficult with the existence of \(Nb_{Li} \). Thus, among the three intrinsic defects, \(Nb_{Li} \) will show the strongest pinning effect.

Because the domain walls act as trap sites for defects, defects might form a cluster near the domain walls. In order to verify the energetics of single defect/domain wall interactions, we have also considered defect clusters. For this study, we have considered two different defect pairs, \(Li_{i} + V_{Li} \) and \(Nb_{Li} + 4V_{Li} \). By assuming that defects do not interact with each other and are equally distant from the wall, we were able to determine the maximum interaction energy of the two defect clusters with one \(Y \)-wall and two \(X \)-walls: the defect cluster/domain wall interaction energies are shown in the change of DFE from the reference state and listed in Table 1. Consistent with the results of the single defect case, three different types of domain walls act as trap sites for both defect pairs. Also, the \(X_{\text{I}} \)-wall interacts more strongly with both defect clusters.

We have looked at the energetics of the defects interacting with domain walls in LiNbO\(_3\). Now we will discuss how the defects can migrate near the domain wall. In order to study the migration of various point defects, we have employed the NEB method along the migration pathway. Because the previous study\(^{17}\) has shown that the \(Y \)-wall, lying parallel to the (110) plane, is energetically much more favorable than the two \(X \)-walls, our study focused on the migration behavior of defects around the \(Y \)-wall. Especially, the current study has focused on the \(Nb_{Li} \cdot V_{Li} \) pair, because \(Nb_{Li} \) is the most highly interacting type of defect and \(V_{Li} \) is necessary for mitigating the highly positive charge state of \(Li_{i} \). Fig. 3 shows the potential energy profile along the migration pathway of the \(Nb_{Li} \cdot V_{Li} \) pair across the \(Y \)-wall. The bottom figures show the atomic configuration of the \(Nb_{Li} \cdot V_{Li} \) pair across the \(Y \)-wall in the initial state (IS).

Table 1. Comparison of Interaction Energies of Two Defect Complexes with One \(Y \)-wall and two \(X \)-walls. The DFE at Bulk State is Shown as a Reference for Each Configuration

<table>
<thead>
<tr>
<th>DFE at bulk</th>
<th>(Y)-wall</th>
<th>(X_{\text{I}})-wall</th>
<th>(X_{\text{II}})-wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Li_{i} + V_{Li})</td>
<td>0.75</td>
<td>-0.12</td>
<td>-0.23</td>
</tr>
<tr>
<td>(Nb_{Li} + 4V_{Li})</td>
<td>-1.00</td>
<td>-0.15</td>
<td>-0.22</td>
</tr>
</tbody>
</table>

Fig. 2. Variation of defect formation energy (DFE) as a function of distance from (a) \(Y \)-wall, (b) \(X_{\text{I}} \)-wall and (c) \(X_{\text{II}} \)-wall. The DFE of three dominant point defects: \(Li_{i} \) (red), \(V_{Li} \) (green) and \(Nb_{Li} \) (blue) are calculated using density functional theory (DFT).

Fig. 3. Potential energy profile along the migration pathway of the \(V_{Li} / Nb_{Li} \) pair across the \(Y \)-wall.
transition state (TS) and final state (FS). As can be seen, \(N\bar{b}_{Li} \) and \(V_{Li} \) sit in two oxygen octahedral cages across the Y-wall that are next to each other. Thus, it is reasonable to assume that \(N\bar{b}_{Li} \) will migrate through the shortest pathway to \(V_{Li} \), as shown by the cyan arrow in the left bottom of Fig. 3. The migration barrier for \(N\bar{b}_{Li} \) moving toward the \(V_{Li} \) site is 3.44 eV at the transition state (TS). This shows that significant energy is required to move \(N\bar{b}_{Li} \) across the Y-wall. Therefore, it is reasonable to think that \(N\bar{b}_{Li} \), which can be easily captured by the Y-wall, will have difficulty migrating across the Y-wall and thus will pin the Y-wall.

We now consider how the migration behavior of the \(N\bar{b}_{Li} \cdot V_{Li} \) pair changes under surplus electrons. Fig. 4 shows the potential energy profile along the migration pathway of the \(N\bar{b}_{Li} \cdot V_{Li} \) pair under one excess electron. The addition of an extra electron decreases the migration barrier of the \(N\bar{b}_{Li} \cdot V_{Li} \) pair from 3.44 to 3.16 eV. Thus, the extra electron will enhance the migration of \(N\bar{b}_{Li} \) into \(V_{Li} \). In order to understand the decrease in the migration barrier of \(N\bar{b}_{Li} \) into \(V_{Li} \), the electronic density of state (DOS) is analyzed. The inset of Fig. 4 shows the site projected DOS at the TS during the migration of \(N\bar{b}_{Li} \) into \(V_{Li} \). At the TS, \(N\bar{b}_{Li} \) sits exactly on the Y-wall. (See Fig. 3) As a result, a gap state is only available at the TS, extra electrons will go to the bottom of the conduction band at the IS. In this gap state is only available at the TS, extra electrons can be easily captured by the Y-wall, will have difficulty migrating across the Y-wall and thus will pin the Y-wall.

In the following study, we find that the migration barrier of \(N\bar{b}_{Li} \) is significantly high near the Y-wall. Thus, the trapped defects increase the coercive energy and threshold field for the domain wall motion, in what is known as the pinning effect. In addition, trapped defects can cause a local field and this might cause optical degradation. The degradation in both ferroelectricity and the optical property is known as ferroelectric fatigue. By identifying the defects and defect pairs leading to the strongest interaction with the domain walls, we can potentially prevent ferroelectric fatigue or optical degradation by constraining the formation of specific types of defect. From our systematic study of defect/domain interactions, the current works show that \(N\bar{b}_{Li} \) has the strongest interaction with both one Y-wall and two X-walls. Therefore, reducing or replacing \(N\bar{b}_{Li} \) with low interacting defects may be one way to overcome the known limitations of ferroelectric \(LiNbO_3 \).

Acknowledgments

This work was supported by Chonnam National University, 2015, and by the National Institute of Supercomputing and the Network/Korea Institute of Science and Technology Information with supercomputing resources including technical support, No. KSC-2015-C3-034.

REFERENCES

