Preparation of SrGd$_2$(MoO$_4$)$_3$:Er$^{3+}$/Yb$^{3+}$ Phosphors by the Microwave-Modified Sol-Gel Method and Their Upconversion Photoluminescence Properties

Chang Sung Lim†

Department of Advanced Materials Science & Engineering, Hanseo University, Seosan 356-706, Republic of Korea

(Received July 29, 2014; Revised September 6, 2014; Accepted September 15, 2014)

ABSTRACT

SrGd$_2$(MoO$_4$)$_3$:Er$^{3+}$/Yb$^{3+}$ phosphors with doping concentrations of Er$^{3+}$ and Yb$^{3+}$ (x = Er$^{3+}$ + Yb$^{3+}$, Er$^{3+}$ = 0.05, 0.1, 0.2, and Yb$^{3+}$ = 0.2, 0.45) were successfully synthesized by the cyclic microwave-modified sol-gel method, and their upconversion mechanism and spectroscopic properties have been investigated in detail. Well-crystallized particles showed a fine and homogeneous morphology with grain sizes of 2-5 µm. Under excitation at 980 nm, SrGd$_2$(MoO$_4$)$_3$:Er$^{3+}$/Yb$^{3+}$ and SrGd$_2$(MoO$_4$)$_3$:Er$^{3+}$/Yb$^{3+}$/Yb$^{3+}$ particles exhibited a strong 525-nm emission band, a weak 550-nm emission band in the green region, and a very weak 655-nm emission band in the red region. The Raman spectra of the doped particles indicated the domination of strong peaks at higher frequencies of 1023, 1092, and 1325 cm$^{-1}$ and at lower frequencies of 223, 2932, 365, 428, 538, and 594 cm$^{-1}$ induced by the incorporation of the Er$^{3+}$ and Yb$^{3+}$ elements into the Gd$^{3+}$ site in the crystal lattice, which resulted in the unit cell shrinkage accompanying a new phase formation of the [MoO$_4$]$^{4-}$ groups.

Key words : Phosphor, Upconversion, Sol-gel, Raman spectroscopy

1. Introduction

Recently, rare earth doped upconversion (UC) photoluminescence particles have attracted great attention because of the conversion from near-infrared radiation of low energy to visible radiation of high energy. These UC photoluminescence particles have potential applications in various fields, including biomedical imaging, owing to their unique UC optical behaviors that offer improved light penetration depth, high chemical and photo stability, and high resistance to photobleaching. These properties overcome many of the current limitations in traditional photoluminescence materials. Among rare earth ions, the Er$^{3+}$ ion is suitable for converting infrared to visible light through the UC process due to its appropriate electronic energy level configuration. Co-doped Yb$^{3+}$ ions and Er$^{3+}$ ions can remarkably enhance the UC efficiency for the shift from infrared to visible light due to the efficiency of the energy transfer from Yb$^{3+}$ to Er$^{3+}$. The Yb$^{3+}$ ion, as a sensitizer, can be effectively excited by an incident light source energy. This energy is transferred to the activator from which radiation can be emitted. The Er$^{3+}$ ion activator is the luminescence center of the UC particles, while the sensitizer enhances the UC luminescence efficiency.

Recently, rare earth activated MR$_x$(MoO$_4$)$_3$ (M = Ba, Sr, Ca; R = La, Gd, Y) has attracted great attention because of its spectroscopic characteristics and excellent upconversion photoluminescence properties. Several processes have been developed to prepare these rare-earth-doped double molybdates, including solid-state reactions, co-precipitation, sol-gel method, hydrothermal method, the Pechini method, organic gel-thermal decomposition, and the microwave-assisted hydrothermal method. For practical application of UC photoluminescence in products such as lasers, three-dimensional displays, light-emitting devices, and biological detectors, features such as the homogeneous UC particle size distribution and morphology need to be well defined. Usually, double molybdates are prepared by a solid-state method that requires high temperatures, a lengthy heating process and subsequent grinding; this results in a loss of the emission intensity and an increase in cost. The sol-gel process provides some advantages over the conventional solid-state method, including
good homogeneity, low calcination temperature, small particle size and narrow particle size distribution optimal for good luminescent characteristics. However, the sol-gel process has a disadvantage in that it takes a long time for gelation. Compared with the usual methods, microwave synthesis has the advantages of a very short reaction time, small-size particles, narrow particle size distribution, and high purity of the final polycrystalline samples. Microwave heating is delivered to the material surface by radiant and/or convection heating, which is transferred to the bulk of the material via conduction. The cyclic microwave-modified sol-gel process is a cost-effective method that provides high homogeneity and is easy to scale-up, and it is emerging as a viable alternative approach for the quick synthesis of high-quality luminescent materials.

In this study, SrGd$_{1-x}$(MoO$_4$)$_3$:Er$^{3+}$/Yb$^{3+}$ phosphors with doping concentrations of Er$^{3+}$ and Yb$^{3+}$ \((x = 0.05, 0.1, 0.2, \text{and } Yb^{3+} = 0.2, 0.45) \) were prepared by the cyclic microwave-modified sol-gel method for the first time. The synthesized particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The optical properties were examined comparatively using photoluminescence (PL) emission and Raman spectroscopy.

2. Experimental Procedure

Appropriate stoichiometric amounts of Sr(NO$_3$)$_2$·4H$_2$O (99%, Sigma-Aldrich, USA), Gd(NO$_3$)$_3$·6H$_2$O (99%, Sigma-Aldrich, USA), (NH$_4$)$_2$MoO$_4$·4H$_2$O (99%, Alfa Aesar, USA), Er(NO$_3$)$_3$·5H$_2$O (99.9%, Sigma-Aldrich, USA), Yb(NO$_3$)$_3$·5H$_2$O (99.9%, Sigma-Aldrich, USA), citric acid (99.5%, Daejung Chemicals, Korea), NH$_4$OH (A.R.), ethylene glycol (A.R.) and distilled water were used to prepare SrGd$_3$(MoO$_4$)$_2$, Gd$_{1-x}$SrGd$_x$(MoO$_4$)$_3$, SrGd$_{1.5}$(MoO$_4$)$_2$, Er$_{0.05}$Yb$_{0.2}$(MoO$_4$)$_3$, and SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.05}$Yb$_{0.45}$ precursors. The transparent solutions were prepared by dissolving Sr(NO$_3$)$_2$·4H$_2$O and citric acid (with a molar ratio of citric acid to total metal ions of 2:1) in 100 mL of distilled water under vigorous stirring and heating. The transparent solutions were then placed in a microwave oven operating at a frequency of 2.45 GHz with a maximum output-power of 1250 W for 30 min. The working cycle of the microwave reaction was controlled very precisely using a regime of 40 s on and 20 s off for 15 min, followed by further treatment of 30 s on and 30 s off for 15 min. The samples were treated with ultrasonic radiation for 10 min to produce a light yellow transparent sol. After this, the light yellow transparent sols were dried at 120°C in a dry oven to obtain black dried gels. The black dried gels were ground and heat-treated at 900°C for 16 h with 100°C intervals between 600-900°C. Finally, white particles were obtained for SrGd$_2$ (MoO$_4$)$_2$, SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.2}$, SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.2}$Yb$_{0.2}$, and SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.05}$Yb$_{0.45}$.

The phase composition of the synthesized particles was identified using XRD (D/MAX 2200, Rigaku, Japan). The microstructure and surface morphology of the SrGd$_2$ (MoO$_4$)$_2$, SrGd$_{1.5}$(MoO$_4$)$_2$, SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.2}$, and SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.05}$Yb$_{0.45}$ particles were observed using SEM/EDS (JSM-5600, JEOL, Japan). The PL spectra were recorded using a spectrophotometer (Perkin Elmer LS55, UK) at room temperature. Raman spectroscopy measurements were performed using a LabRam Aramis (Horiba Jobin-Yvon, France). The 514.5-nm line of an Ar ion laser was used as the excitation source, and the power on the samples was kept at 0.5 mW.

3. Results and Discussion

Figure 1 shows the XRD patterns of the synthesized SrGd$_2$ (MoO$_4$)$_2$, SrGd$_{1.5}$(MoO$_4$)$_2$, SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.2}$, SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.2}$Yb$_{0.2}$, and SrGd$_{1.5}$(MoO$_4$)$_2$:Er$_{0.05}$Yb$_{0.45}$ particles. All of the XRD peaks could be assigned to the tetragonal-phase SrMoO$_4$ with a scheelitelike structure of space group I4$_1$a with lattice parameters a = 0.8460 nm and c = 0.7199 nm.
of a = b = 5.3796 Å and c = 11.9897 Å,23-25 which was in good agreement with the crystallographic data of SrMoO₄ (JCPDS 08-0482). This means that the tetragonal-phase of SrGd₄(MoO₄)₂:Er⁵⁺/Yb⁷⁺ can be prepared using the cyclic microwave-modified sol-gel method. During the cyclic microwave-modified sol-gel process, the ethylene glycol was evaporated slowly at its boiling point. Ethylene glycol is a polar solvent at its boiling point of 197°C, and this solvent is a good candidate for the microwave process. If ethylene glycol is used as the solvent, the reactions proceed at the boiling point temperature. When microwave radiation is applied to the ethylene-glycol-based solution, the components dissolved in the ethylene glycol can couple. The charged particles vibrate in the electric field interdependently when a large amount of microwave radiation is applied to the ethylene glycol. This suggests that the cyclic microwave-modified sol-gel route is suitable for the growth of SrGd₄(MoO₄)₂:Er⁵⁺/Yb⁷⁺ crystallites and for developing the strongest intensity peaks at the (112), (204), and (312) planes, which are the major peaks of SrMoO₄.25-28 Impurity phases were detected at 25° and 31.5° in Fig. 1(d) and at 24°, 25°, 25.5°, 29.5°, and 32° in Fig. 1(e). The foreign reflexes are marked with asterisk in Fig. 1(d) when the doping concentration of Er⁵⁺/Yb⁷⁺ is 0.04/0.08 mol% and in Fig. 1(e) when the doping concentration of Er⁵⁺/Yb⁷⁺ is 0.02/0.18 mol%. However, it is difficult to identify the impurity phases since very weak peaks are observed. A similar impurity phase is also observed in the case of Er⁵⁺/Yb⁷⁺-doped SrMoO₄ phosphor when the doping concentration of Er⁵⁺/Yb⁷⁺ is 0.02/0.18 mol%.20 Post heat-treatment plays an important role in a well-defined crystallized morphology. To achieve a well-defined crystalline morphology, the SrGd₄(MoO₄)₂:Er⁵⁺/Yb⁷⁺ phases need to be heat treated at 900°C for 12 h. It is assumed that the doping amount of Er⁵⁺/Yb⁷⁺ has a great effect on the crystalline cell volume of the SrGd₄(MoO₄)₂, because of the different ionic sizes and energy band gaps. This means that the obtained samples have a tetragonal-phase after partial substitution of Gd³⁺ by Er³⁺ and Yb³⁺ ions, and the ions are effectively doped into crystal lattices of the SrGd₄(MoO₄)₂ phase due to the similar radii of Gd³⁺ and Er³⁺ and Yb³⁺.24,26

Figure 2 shows a scanning electron microscopy image of the synthesized SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 particles. The as-synthesized samples are well crystallized with a fine and homogeneous morphology and grain sizes of 2-5 μm. Fig. 3 shows the energy-dispersive X-ray spectroscopy patterns of the synthesized (a) SrGd₄(MoO₄)₂:Er₀.15 and (b) SrGd₄(MoO₄)₂:Er₀.15/Yb₀.45 particles, and quantitative compositions of (c) SrGd₄(MoO₄)₂:Er₀.2 and (d) SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 particles. The EDS pattern shows that the (a) SrGd₄(MoO₄)₂:Er₀.15 and (b) SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 particles are composed of Sr, Gd, Mo, O and Er for SrGd₄(MoO₄)₂:Er³⁺ and Sr, Gd, Mo, O Er and Yb for SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 particles. The quantitative compositions (c) and (d) are in good relation with nominal compositions of the SrGd₄(MoO₄)₂:Er₀.2 and SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 particles. The relation of Sr, Gd, Mo, O Er and Yb components exhibits that SrGd₄(MoO₄)₂:Er₀.2 and SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 particles can be successfully synthesized using the cyclic microwave-modified sol-gel method. The cyclic microwave-modified sol-gel process of double molybdates provides the energy to synthesize the bulk of the material uniformly, so that fine particles with controlled morphology can be fabricated in short time periods. The method is a cost-effective way to provide highly homogeneous products with easy scale-up, and it is a viable alternative for the rapid synthesis of UC particles.

Figure 4 shows the UC phosphor emission spectra of the as-prepared (a) SrGd₄(MoO₄)₂:Er₀.3, (b) SrGd₄(MoO₄)₂:Er₀.3, (c) SrGd₄(MoO₄)₂:Er₀.15/Yb₀.2 and (d) SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 particles excited under 980 nm at room temperature. The SrGd₄(MoO₄)₂:Er₀.15/Yb₀.2 and SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 particles exhibit strong 525-nm and 550-nm emission bands in the green region, which correspond to the ⁹I₁₁₂ → ⁷I₄₅₂ and ⁷S₅₂ → ⁷I₄₅₂ transitions, respectively, while the very weak 655-nm emission band in the red region corresponds to the ⁷F₅₂ → ⁷I₄₅₂ transition. The UC intensities of (a) SrGd₄(MoO₄)₂:Er₀.3 and (b) SrGd₄(MoO₄)₂:Er₀.15/Yb₀.2 were not detected. The UC intensity of (d) SrGd₄(MoO₄)₂:Er₀.05/Yb₀.45 is much higher than that of (c) SrGd₄(MoO₄)₂:Er₀.15/Yb₀.2 particles. Similar results are also observed from Er³⁺/Yb³⁺ co-doped in other host matrices, which are assigned in the UC emission spectra with the green emission intensity (⁹H₅₂ → ⁷I₄₅₂ and ⁷S₅₂ → ⁷I₄₅₂ transitions) and the red emission intensity (⁷F₅₂ → ⁷I₄₅₂ transition).²,7,10,18,27

Figure 5 shows schematic energy level diagrams of Er³⁺ ions (activator) and Yb³⁺ ions (sensitizer) in the as-prepared SrGd₄(MoO₄)₂:Er³⁺/Yb³⁺ system and the upconversion mechanisms accounting for the green and red emissions under 980-nm laser excitation. For Er³⁺/Yb³⁺ co-doped UC phosphors, the Yb³⁺ ion sensitizer can be effectively excited by the energy of the incident light source, which transfers this energy to the activator, where radiation can be emitted. The Er³⁺ ion activator is the luminescence center in UC particles, and the sensitizer enhances the UC luminescence efficiency.
Fig. 3. Energy-dispersive X-ray spectroscopy patterns of the synthesized (a) SrGd$_{1.8}$(MoO$_4$)$_4$:Er$_{0.2}$ and (b) SrGd$_{1.5}$(MoO$_4$)$_4$:Er$_{0.05}$Yb$_{0.45}$ particles and quantitative compositions of (c) SrGd$_{1.8}$(MoO$_4$)$_4$:Er$_{0.2}$ and (d) SrGd$_{1.5}$(MoO$_4$)$_4$:Er$_{0.05}$Yb$_{0.45}$ particles.

Fig. 4. Upconversion photoluminescence emission spectra of (a) SrGd$_{2}$(MoO$_4$)$_4$, (b) SrGd$_{1.8}$(MoO$_4$)$_4$:Er$_{0.2}$, (c) SrGd$_{1.7}$(MoO$_4$)$_4$:Er$_{0.1}$Yb$_{0.2}$, and (d) SrGd$_{1.5}$(MoO$_4$)$_4$:Er$_{0.05}$Yb$_{0.45}$ particles excited under 980 nm at room temperature.

Fig. 5. Schematic energy level diagrams of Er$^{3+}$ ions (activator) and Yb$^{3+}$ ions (sensitizer) in the as-prepared SrGd$_{2}$(MoO$_4$)$_4$:Er$^{3+}$/Yb$^{3+}$ system and the upconversion mechanisms accounting for the green and red emissions under 980 nm laser excitation.
due to the energy matching of the gap between the $^2F_{5/2}$ and the $^2F_{7/2}$ of Yb$^{3+}$. The UC emissions are generated through multiple processes of ground-state absorption (GSA) and energy transfer (ET). For the green emissions, under the excitation of 980 nm, the Yb$^{3+}$ ion sensitizer is excited from the ground state of the $^2F_{7/2}$ to the excited state of the $^2F_{5/2}$ through the GSA process, and the energy is transferred to the excited Er$^{3+}$ ions and promoted from the $^1I_{15/2}$ to the $^1I_{11/2}$ by the ET process of $^1I_{11/2}$ (Er$^{3+}$) + $^2F_{5/2}$ (Yb$^{3+}$) → $^1I_{13/2}$ (Er$^{3+}$) + $^2F_{7/2}$ (Yb$^{3+}$). Another Yb$^{3+}$ ion at the $^2F_{7/2}$ level transfers the energy to the excited Er$^{3+}$ ion, and then further transmits the energy from the $^1I_{15/2}$ to the higher $^2F_{5/2}$ level by another ET process of $^1I_{15/2}$ (Er$^{3+}$) + $^2F_{7/2}$ (Yb$^{3+}$) → $^1I_{13/2}$ (Er$^{3+}$) + $^2F_{5/2}$ (Yb$^{3+}$), which are for the population of the different level in Er$^{3+}$. The populated $^2F_{5/2}$ level relaxes rapidly and non-radiatively to the next lower $^1H_{11/2}$ and $^3S_{3/2}$ in Er$^{3+}$ because of the short lifetime of the $^2F_{5/2}$ level. Then, the radiative transitions of $^3H_{11/2}$ → $^1I_{15/2}$ and $^3S_{3/2}$ → $^1I_{15/2}$ processes can produce green emission at 525 and 550 nm, respectively. It is noted that the green upconversion luminescence can be induced by a two-photon process. For red emission, the $^2F_{7/2}$ level is populated by non-radiative relaxation from the $^3S_{3/2}$ to the $^2F_{5/2}$ level and the second ET from the $^1I_{15/2}$ to the $^2F_{5/2}$ level in Er$^{3+}$. Finally, the $^2F_{5/2}$ level relaxes radiatively to the ground state at the $^1I_{15/2}$ level and releases red emission at 655 nm. The strong 525-nm and 550-nm emission bands in the green region as shown in Fig. 4 are assigned to the $^2H_{11/2}$ → $^1I_{15/2}$ and $^3S_{3/2}$ → $^1I_{15/2}$ transitions of Er$^{3+}$ ions, respectively, while the weak 655-nm emission band in the red region is assigned to the $^2F_{5/2}$ → $^1I_{15/2}$ transition. The much higher intensity of the $^2H_{11/2}$ → $^1I_{15/2}$ transition in comparison with that of the $^3S_{3/2}$ → $^1I_{15/2}$ transition in Fig. 4 may be induced by the concentration quenching effect of the energy transfer between the nearest Er$^{3+}$ and Yb$^{3+}$ ions and the interactions between doping ions in the SrGd$_4$(MoO$_4$)$_3$ host matrix.

This means that the green band $^3H_{11/2}$ → $^1I_{15/2}$ transitions are assumed to be more easily quenched than that of the $^3S_{3/2}$ → $^1I_{15/2}$ transition by non-radiative relaxation in the case of the SrGd$_4$(MoO$_4$)$_3$ host matrix.

Fig. 6 shows the Raman spectra of the synthesized (a) SrGd$_4$(MoO$_4$)$_3$ (SGM), (b) SrGd$_4$(MoO$_4$)$_3$:Er$^{3+}$ (SGM:Er), (c) SrGd$_4$(MoO$_4$)$_3$:Er$^{3+}$:Yb$^{3+}$ (SGM:ErYb) and (d) SrGd$_4$(MoO$_4$)$_3$:Er$^{3+}$:Yb$^{0.45}$ (SGM:ErYb) particles excited by the 514.5-nm line of an Ar ion laser at 0.5 mW on the samples. The well-resolved sharp peaks for the SrGd$_4$(MoO$_4$)$_3$ particles in Fig. 6(a) indicate the high crystallization state of the synthesized particles. The internal vibration mode frequencies are molecular on the lattice parameters and the degree of the partially covalent bond between the cation and ionic square antiprisms through the common O ions. In the doped crystals, the cell volume decreases proportionally to the dopant concentration x and dependence. The dependence was generated by the difference of effective ion radii R(Yb$^{3+}$, CN = 8) = 0.985 Å, R(Er$^{3+}$, CN = 8) = 1.004 Å, R(Gd$^{3+}$, CN = 8) = 1.053 Å. The unit cell shrinkage results from the substitution of Gd$^{3+}$ ions by Er$^{3+}$ and Yb$^{3+}$ ions. Therefore, the strong peaks at higher and lower frequencies are attributed to the formation of disordered structures of SrGd$_4$(MoO$_4$)$_3$ by the incorporation of the Er$^{3+}$ and Yb$^{3+}$ elements into the crystal lattice, resulting in the unit cell shrinkage accompanying the new phase formation of the [MoO$_4$]$^{2-}$ groups. The [MoO$_4$]$^{2-}$ group has strong absorption in the near ultraviolet region, so the energy transfers process from the [MoO$_4$]$^{2-}$ group to rare earth ions can easily occur, which can greatly enhance the external quantum efficiency of rare earth ions-doped materials. It is emphasized that the unit cell shrinkage accompanying the new phase formation of the [MoO$_4$]$^{2-}$ groups in the SrGd$_4$(MoO$_4$)$_3$:Er$^{3+}$/Yb$^{3+}$ incorporated by Er$^{3+}$ and Yb$^{3+}$ ions strongly affects the upconversion intensities with the doping concentrations of Er$^{3+}$ and Yb$^{3+}$, especially in the compositions of SrGd$_4$(MoO$_4$)$_3$:Er$^{3+}$:Yb$^{0.45}$ and SrGd$_4$(MoO$_4$)$_3$:Er$^{3+}$:Yb$^{0.2}$. These results lead to high emitting efficiency, superior thermal and chemical stability and can be considered as potentially active components in new optoelectronic devices and luminescent imaging, which overcome the current limitations in traditional photoluminescence materials.

4. Conclusion

SrGd$_4$(MoO$_4$)$_3$:Er$^{3+}$/Yb$^{3+}$ green phosphors with doping concentrations of Er$^{3+}$ and Yb$^{3+}$ were successfully synthesized...
by a cyclic microwave-modified sol-gel method, and the upconversion mechanisms were investigated in detail. Well-crystallized particles, formed after heat-treatment at 900°C for 16 h, showed a fine and homogeneous morphology with grain sizes of 2-5 μm. Under excitation at 980 nm, the SrGd₄₃(MoO₄)₁ 3(3)Erₓ₃⁺ and SrGd₄₃(MoO₄)₁₋ₓ(3)Erₓ₃⁺Ybₓ₃⁺ particles exhibited strong 525-nm 550-nm emission bands in the green region, which were assigned to the ⁴I₁₂₅ → ²I₁₂³ and ⁴S₂ → ²I₁₂₅ transitions, respectively, while a weak 655-nm emission band in the red region was assigned to the ⁴F₂ → ²I₁₂₅ transition by a two-photon process. The UC intensity of the SrGd₄₃(MoO₄)₁₋ₓ(3)Erₓ₃⁺Ybₓ₃⁺ particles was much higher than that of the SrGd₄₃(MoO₄)₁₋ₓ(3)Erₓ₃⁺ particles. The Raman spectra of the doped particles indicated the domination of strong peaks at higher frequencies of 1023, 1092 and 1325 cm⁻¹ and at lower frequencies of 233, 293, 365, 428, 538 and 594 cm⁻¹ induced by disordered structures of SrGd₄₃(MoO₄)₁₋ₓ(3)Erₓ₃⁺Ybₓ₃⁺ due to the incorporation of the Er³⁺ and Yb³⁺ ions into the crystal lattice, which resulted in the unit cell shrinkage accompanying the new phase formation of the [MoO₄]³⁻ groups.

Acknowledgment

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014-046024).

REFERENCES

22. J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu, and L. Peng, “Microwave Synthesis of NaLa₃(MoO₄)₁₂ Microcrystals and Their Near-infraed Luminescent Properties with Lanthano-

