| Home | E-Submission | Sitemap | Login | Contact Us |  
top_img
J. Korean Ceram. Soc. > Volume 38(10); 2001 > Article
Journal of the Korean Ceramic Society 2001;38(10): 928.
저가 탄소섬유를 이용한 악취제거 기술 개발
임연수, 유기상, 김희석, 정윤중
명지대학교 세라믹공학과
The Preparation of Low Cost Activated Carbon Fibers for Removal of Volatile Organic Chemicals and Odor
Yun-Soo Lim, Ki-Sang Yoo, Hee-Seok Kim, Yun-Joong Chung
Department of Ceramic Engineering, Myongji University
ABSTRACT
In this study, two kinds of activated carbon fibers were prepared from PAN-based stabilized fibers by physical activation with steam. The variations in specific surface area, amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. The activated carbon fibers were prepared by two different methods, namely a 1- and 2-step method. For the 2-step method, carbonization of fibers in $N_2$ atmosphere was carried out to make carbon fibers and then activated by steam. In normal two step steam activation, BET surface area of about $1019m^2/g$ was obtained in the study. In the 1-step steam activation process, the carbonization and activation were simultaneously carried out. In the one step steam activation, BET surface area of $1635m^2/g$ was obtained after heat-treatment at $990^{circ}C$. However, nitrogen adsorption isotherms for oxidized PAN based activated carbon fibers that were prepared by both methods were type I in the Brunauer-Deming-Deming-Teller (BDDT) classification even though they have different BET surface areas, amounts of iodine adsorption and pore size distributions.
Key words: PAN-based oxidized fiber, Activated carbon fiber, Specific surface area, Iodine adsorption, Pore size distribution
Editorial Office
Meorijae Bldg., Suite # 403, 76, Bangbae-ro, Seocho-gu, Seoul 06704, Korea
TEL: +82-2-584-0185   FAX: +82-2-586-4582   E-mail: ceramic@kcers.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Ceramic Society.                      Developed in M2PI