| Home | E-Submission | Sitemap | Login | Contact Us |  
J. Korean Ceram. Soc. > Volume 20(4); 1983 > Article
Journal of the Korean Ceramic Society 1983;20(4): 315.
NiO와 $MnO_2$ 의 첨가가 PLZT의 유전특성과 압전특성 및 분극반전특성에 미치는 효과
조경익, 주웅길, 고경신1
한국과학기술원 재료공학과
1중앙대학교 화학과
The Effect of NiO and $MnO_2$ Addition on the Dielectric Piezoelectric and Polarization-Reversal Properties of PLZT
Effect of NiO and $MnO_2$ addtivies on the dielectric piezoelectrics and polarization-reversal properties of $(Pb_{0.936} La_{0.064})$$(Zr_{0.60}Ti_{0.40})O_3$ ceramics have been investigated. The specimens were prepared by the mixed oxide techni-que and atmosphere sintering method. The room temperature X-ray diffraction studies show that perfect perovskite solution with tetragonal structure was obtained from PLZT and its additives. The dielectric constant and dissipation factor decreased with the addition of both NiO and $MnO_2$ The Curie of Curie temperature was not observed but they displayed broadened maxima. The planar coupling factor was improved by addition of NiO and also increased with increasing sintering time carried out at 105$0^{circ}C$ Addition of $MnO_2$ yielded a markedly high mechanical quality factor. The space-charge field decreased with the addition of NiO but increased with the addition of $MnO_2$ The planar coupling factor and space-charge field showed same dependence on the additivies. The tetragonality Curie temperature and planar coupling factor of $(Pb_{0.936} La_{0.064})$$(Zr_{0.60}Ti_{0.40})O_3$ were higher than those of $(Pb_{0.936} La_{0.064})$$(Zr_{0.568}NU_{0.032}Ti_{0.40})_{0.984}O_3$ but the grain size lattic parameter dielectric constant dissipation factor mechanical quality factor and space-charge field of the former were lower than those of the latter.
Editorial Office
Meorijae Bldg., Suite # 403, 76, Bangbae-ro, Seocho-gu, Seoul 06704, Korea
TEL: +82-2-584-0185   FAX: +82-2-586-4582   E-mail: ceramic@kcers.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Ceramic Society.                      Developed in M2PI