Pr2NiO4+δ for Cathode in Protonic Ceramic Fuel Cells
Hyegsoon An, Dongwook Shin, Ho-Il Ji
J. Korean Ceram. Soc. 2018;55(4):358-363.   Published online 2018 Jul 3     DOI:
Citations to this article as recorded by Crossref logo
Materials and nano-structural processes for use in solid oxide fuel cells: a review
Seungyeon Jo, Bharat Sharma, Dae-Hwan Park, Jea-ha Myung
Journal of the Korean Ceramic Society.2020; 57(2): 135.     CrossRef
Conductivity-tailored PtNi/MoS2 3D nanoflower catalyst via Sc doping as a hybrid anode for a variety of hydrocarbon fuels in proton exchange membrane fuel cells
Padmini Basumatary, Dimpul Konwar, Young Soo Yoon
Applied Catalysis B: Environmental.2020; 267: 118724.     CrossRef
La4Ni3O10±δ – BaCe0.9Y0.1O3-δ cathodes for proton ceramic fuel cells; short-circuiting analysis using BaCe0.9Y0.1O3-δ symmetric cells
Francisco J.A. Loureiro, Devaraj Ramasamy, Sergey M. Mikhalev, Aliaksandr L. Shaula, Daniel A. Macedo, Duncan P. Fagg
International Journal of Hydrogen Energy.2020;[Epub]     CrossRef
Ruddlesden–Popper perovskites in electrocatalysis
Xiaomin Xu, Yangli Pan, Yijun Zhong, Ran Ran, Zongping Shao
Materials Horizons.2020; 7(10): 2519.     CrossRef
High-temperature steam electrolysis combined with methane partial oxidation by solid oxide electrolyzer cells
Kyoung-Jin Lee, Min-Jin Lee, Haejin Hwang
Applied Surface Science.2019; 473: 746.     CrossRef
Chromium Poisoning of Neodymium Nickelate (Nd2NiO4) Cathodes for Solid Oxide Fuel Cells
Kyoung Jin Lee, Jae Hun Chung, Min Jin Lee, Hae Jin Hwang
Journal of the Korean Ceramic Society.2019; 56(2): 160.     CrossRef