| Home | E-Submission | Sitemap | Login | Contact Us |  
top_img
J. Korean Ceram. Soc. > Volume 52(1); 2015 > Article
Journal of the Korean Ceramic Society 2015;52(1): 33.
doi: https://doi.org/10.4191/kcers.2015.52.1.33
지역별 옹기의 특성분석 및 발효와의 상관관계 분석 : (1) 지역별 옹기의 물성 및 특성
김수민, 노형구, 김응수, 조우석
한국세라믹기술원 이천분원
Study of the Relationship between the Characteristics of Regional Onggis and Fermentation Behavior: (1) Scientific Analysis of Regional Onggis in Korea
Soomin Kim, Hyunggoo No, Ungsoo Kim, Woo Seok Cho
Icheon Branch, Korea Institute of Ceramic Engineering and Technology
ABSTRACT
Onggi, described as a 'breathing' type of pottery' has significantly influenced the traditional food culture of Korea. It is known that Onggi is an optimal type of storage for fermented foods such as soy sauce, salted seafood, and Kimchi, as air or liquid can penetrate through the body of this material. These foods gain flavor due to the breeding of aerobic bacteria at the beginning of the fermentation process. In this study, Onggi materials from five regions, Gangjin, Yeoju, Ulsan, Yesan, and Jeju, were collected and analyzed to determine their chemical and physical properties before and after sintering. The differences in the raw materials of other mining regions are examined in terms of their chemical and mineralogical compositions, specific surface area, particle size, and particle distribution. Among them, the Gangjin raw material has the greatest mean particle size of $92.29{mu}m$, as well as the widest particle size distribution. Differences in the levels of $SiO_2$ and $Fe_2O_3$ are shown among Onggi raw materials. However, the crystalline phases formed after sintering are identical, except for the Jeju samples. At all sintering temperatures tested here, Gangjin Onggi showed the greatest porosity, leading to complete air permeation through the body within 90 minutes. These results taken together indicate that air permeation is strongly related to the pore structures in the Onggi body. This is assumed to affect the fermentation behavior.
Key words: Onggi, Raw material, Pore, Particle size distribution, Gas permeation
TOOLS
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Share:      
METRICS
1
Crossref
0
Scopus
2,341
View
57
Download
Related article
Editorial Office
Meorijae Bldg., Suite # 403, 76, Bangbae-ro, Seocho-gu, Seoul 06704, Korea
TEL: +82-2-584-0185   FAX: +82-2-586-4582   E-mail: ceramic@kcers.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Ceramic Society.                      Developed in M2PI